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A. Introduction and Questions: We drew three inference questions to determine a general 

conclusion pertaining to median income. The three inference situations are: median 

income vs. region, median income vs. urban indicator, and median income vs. percent 

college graduate. We will perform an ANOVA test, a 2-sample test, and a regression test, 

respectively, to collect data on these three inference situations. Based off of this, we will 

answer the following question: what general effects does median income have on an 

individual? This question is important to know because it will allow the government and 

society to cater to the needs of each income bracket.  

B. Data: 

 Brief Description Numeric or Categorical 

Median Income It is the median household income of 
a county.  

Numeric continuous 

Region It is one of the following four regions: 
Northeast, North Central, South, or 
West. 

Categorical 

Urban Indicator It is whether a county is an urban 
county or not.  

Categorical 

Percent College 
Graduate 

It is the percent of people aged 25 and 
over that graduated from college.  

Numeric continuous 

 

C. Inference 1: ANOVA of Median Income vs Region 

Completed by Natasha 

a. Code displayed in Appendix 

1 



b. The statistical procedure being used to analyze the relationship between median 

income and region is a one-sided ANOVA test. An ANOVA test is used to 

determine if several populations have the same means by comparing how far apart 

the sample means are and with how much variance. In this case, we are 

comparing different regions (populations) to see if the have the same mean 

median incomes and what the variance is between them. This is a two-sided 

inference because the alternate hypothesis is that at least two μi’s are different.  

c. There are three assumptions for an ANOVA test: each population comes from an 

independent SRS, the populations have a normal distribution, and all the 

populations have the same unknown variance. I have outlined each assumption in 

the table below to prove that all of the assumptions are satisfied: 

Independent SRS Assumed to be true 
SATISFIED 

Normal populations 
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Based off of the histogram and the QQ plots, we can say that the 
populations are normal. The red and blue curves on the 
histogram are similar, meaning that the populations match the 
normal distribution. The plots on the GG plots fall approximately 
in a straight line, meaning that the populations match the normal 
line.  
SATISFIED 

Variance 

 
We can test that all the populations have the same variance by 
using the following equation:  
 
Smax/Smin < 2 
14844.251/9218.282 <2 
1.610 < 2 
SATISFIED 
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d. I chose to display the data using a boxplot and an effects plot to see if there is 

evidence to suggest that the median incomes vary by region.  

Boxplot Effects Plot 

 
 

Based off of these boxplots, it looks like 
the median incomes for each region are 
very similar to one another. We can use 
an ANOVA test to determine if there is 
evidence to suggest that the median 
income levels are actually the same or if 
they are different.  

Based off this effects plot we can see that 
there is some variation in the median 
incomes for each region. The NE has the 
highest and the South has the lowest with 
more than a $10,000 difference between 
the two. We can use an ANOVA test to 
determine if there actually is a difference 
in the median incomes for each region.  

 

e. ANOVA Hypothesis Test: 

Step 1: Definition of the terms 

μNE is the population mean median income for the Northeast region 

μNC is the population mean median income for the North Central region 

μSO is the population mean median income for the South region 

μW is the population mean median income for the West region 
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Step 2: State the hypotheses 

Ho: μNE = μNC = μSO = μW 

Ha: at least two μi’s are different 

Step 3: Find the test statistic, p value, report DF 

 

Fts= 75.68 

P value= 2e^-16 

DF= 3 (1) and 1094 (2) 

Step 4: Conclusion 

α = 0.05  

Since 2e^-16 is smaller than the significance level of 0.05, we should reject the 

null hypothesis (Ho). The data provides evidence that the population mean 

median incomes of at least one of the regions is different from the rest.  

Multiple Comparison Test (Tukey): 

I chose the Tukey method because I want to compare the population mean for 

each region to each other, not to a control group.  

 

Zero is in the interval for one pairing: West-North Central. This means that we 

have evidence to suggest that these two regions could have the same population 
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mean median income. However, since zero does not lie in the interval for any 

other pair, we can say that we have evidence that the other population means are 

different from one another.  

f. Based off of the ANOVA test (hypothesis and multiple comparison test), we can 

conclude that the sample mean median incomes for the four different regions are 

not the same. This means that each region has different median incomes, which 

suggests that region plays a factor into this. Even though the results from the 

Tukey test suggest that the West and North Central regions could have the same 

median incomes, it is unlikely because the difference between the two is a 

positive value. This is only possible if the two regions have different median 

incomes. Referring back to our conclusion, we can say that the region a person 

lives in affects what their median income will be. More specifically, we can say 

that the Northeast tends to have higher median incomes and the South tends to 

have lower median incomes. This is important for the government and businesses 

to recognize because it means that adjustments will have to made to prices 

depending on the location of their target market.  

D. Inference 2: 2-sample test Urban Indicator vs Median Income 

Completed by Benya 

a. Code displayed in Appendix 

b. In order to compare the median income and whether or not they are in the urban 

or rural area, the two-sample test must be performed. Two-sample test is 

performed when the data are not dependent on each other. The Urban Indicator 

are 2 completely different different category. The Urban Indicator in the US Data 

set is 1 and 0, meaning they are either in the urban area or rural area. We should 

use a two-sided alternative for this analysis. This is because the null hypothesis is 

that each urban indicator has the same/similar median income, while the 

alternative should be that they are significantly difference, making one urban 

indicator (rural or urban area) less than OR greater than another region. 

c. Assumptions for 2 sample t-test for independent variables are as follow: 
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i. SRS: assumed correct 

ii. Urban indicator 0 and 1 are assumed to be independent 

iii. Normal: 

Histograms and boxplots 

Q-Q plots  

Though the data is a simple random sample, the data is not normally distributed 

from the graphs above. First, the histogram are not symmetrical, showing that that the 

data is not normal. Next, the box plot shows a few outliers and that the median is not 

approximately close to the mean. These attributes shows even more reasons why the data 
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is not normally distributed. Lastly, in the Q-Q plots above, the points are skewed right. 

Because of these reasonings, it can be concluded that the data are not normally 

distributed. Because it is not normally distributed; therefore, we are unable to perform a 

t-test, I will perform a log transformation in order to make the data normally distributed. 

Performing a log transformation will be able to better distribute the data points. Log 

transformation is useful when the data is highly skewed, which is the case with the 

median income data. The following graphs is when the data have gone through a log 

transformation.  

Histograms and boxplots after a log transformation 
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Q-Q Plots after a log transformation 

Because it is assumed that the data is SRS, we must next see if the log data is normally 

distributed in order to ensure that all of the assumptions are met in order to perform a 

2-sample t-test. From the 2 graphs above, it can be stated that the data is now normalized 

after the log transformation. The histogram are now approximately symmetric and the 

mean and median are now approximately equal. The Q-Q plots shows that the graph are 

not longer skewed and that the points are closely align to the normal line. Because of 

these reasonings, the data is now normally distributed. Since the data is normal and that it 

is from a simple random sample, it is safe to continue with the t-test. 

 

d. The following graphs are the same graphs as the above 2 graphs. 

 

9 



 

The picture on the right has 
two parts. The histogram 
and the boxplot. The 
histogram shows that the 
median income in the urban 
indicator of 1 and 0 are very 
different. They are 
differently distributed. For 
example, about 30% of the 
people in the urban 
indicator of 0 has a log 
income of ~10. At the same 
time, only ~5% of the 
population in the urban 
indicator has a log income 
of ~10. Thought both 
histograms are normally 
distributed, this shows that 
the data in urban indicator 0 
and 1 are not similar. 
Similar conclusions can be 
made with the box plot. The 
mean/media of the log 
income of urban indicator 0 
is lower than the urban 
indicator 1. This means that 
on average, the income of 
the people that lives in the 
urban indicator 0 has less 
income than the people in 
urban indicator 1.  

 

The Q-Q plot shows that the 
log income data is normally 
distributed. It also shows 
the outliers in each urban 
indicator.  
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e. Confidence interval and hypothesis test 

Confidence Interval: 

 

From the data in the table above, we are 95% confidence that the population mean 

of the log median income for Urban Indicator 0 lies in between 10.0851 and 10.1519. We 

are also 95% confidence that the population mean of the log median income for Urban 

Indicator 1 lies in between 10.4478 and 10.4965. With that being said, we are 95% 

confidence that the difference in population mean of the log median income for Urban 

Indicator 0 and 1 lies in between -0.3949 and -0.3123. Since the confidence interval of 

the difference between Urban Indicator 0 and 1 does not include 0, we can reject the null 

hypothesis which states that the two urban indicator’s median income are equal. 

 

Hypothesis Test: 

Step 1: 

= population mean of log median income of the urban indicator 0.zeroμ  

= population mean of log median income of the urban indicator 1.oneμ   

Step 2: Null Hypothesis = - = 0zeroμ oneμ  

Alternative Hypothesis = - != 0zeroμ oneμ  

Step 3:  

Test Statistics: -16.82 (given in the table above) 

Degree of Freedom: 628.73 (given in the table above) 
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P-Value: <0.0001 (given in the table above) 

Step 4:  

Since 0.0001 (the P-Value) is less than 0.05 (alpha), we will reject the null 

hypothesis which states that the median income in Urban Indicator 0 and 1 are equal. 

Because of this conclusion, there is enough evidence to prove that the two urban 

indicator’s median income are not equal.  

 

f.   By doing the 2-sample independent t-test, it can be safe to state that the median 

income of the Urban Indicator 0 and 1 are not equal. This does not prove that the urban 

indicator determines the median income. There could be many other variable that could 

contribute to median income. What this test does is prove that a person that lives in 

Urban Indicator 0 on average, do not have the same income as a person that lives in 

Urban Indicator 1. By knowing this information, the government may want to look as to 

why the median income in both Urban Indicator are not equal. They would want to close 

that gap down in order to create a better place for people to live in.  

 

E. Inference 3: Regression of Median Income vs Percent College Graduate 

a. Code displayed in Appendix 

b. A regression should be used because because we want to know the relationship 

between the median income and percent college graduate with the former as the 

explanatory variable and latter as the response variable. As education costs start to 

be a non issue in the higher incomes, we will be restricting our inference to people 

with an income between $20420 and $41320, the federal poverty line for 3 and 8 

member families.  

c. Assumptions and Transformations 

i. Transformations 

1. Median Income will need a logarithmic transformation. Looking at 

the histogram of the median income before the transformation, the 

distribution appears to be unimodal but heavily skewed to the 
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right. Centered with a logarithmic transformation, the transformed 

datas histogram is unimodal, and symmetric.  

 

2. Percent Graduate over 21 will need a logarithmic transformation. 

Looking at the histogram of the percent graduates before the 

transformation, the distribution appears to be unimodal but heavily 

skewed to the right. Centered with a logarithmic transformation, 

the transformed datas histogram is unimodal, and symmetric.  
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ii. Assumptions 

1. A SRS is assumed to be true. Each county is also assumed to 

independent of one another. 

2. Looking at the scatterplot, the relationship appears to be linear, 

but, because of its near horizontal nature, it does not have a high 

coefficient of correlation at 0.3101.  

 

3. Looking at both the histogram and the QQ plot, the residual 

appears to be normally distributed in general. This shows that the 

response is normally distributed around the regression line.  
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a.   

The histogram of the residual appears to be unimodal, and symmetric with 

no obvious outliers.  

b.  
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The qq appears to be normally distributed with most data lying close to or 

on the diagonal.  

 

4. The standard deviation of the residual appears to be constant.  

 

The residual plot is of equal variance throughout.  

d. For a regression, it is appropriate to use a scatter plot to visualize the data and 

residues.  

 

There does not appear to be any discernable pattern in the residual plot.  
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e. Test to see if the slope is zero. This indicates if the two are independent or not. 

Step 1: Definition of the terms 

Let 1 be the population slope.μ  

Step 2: State the hypotheses 

H0: 1=0μ  

HA: 1≠0μ  

Step 3: Find the Test Statistic, p-value, report DF 

 

df1=1 

df2=697 

tts=8.610 

Equation of line: Predicted percent graduate = -4.61031 + 0.72353*(median income) 

P-value≈0 

Step 4: Conclusion 

α=0.01 

0 < 0.01 

With a p-value of close to 0, there is strong evidence for rejecting the null hypothesis the 

population slope is 0 in favor of the alternative that the slope is not 0. This suggests that there is 

an association between the log median income and log percent college graduates over 21.  
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f. In conclusion, the tests suggest that there is an association between log median 

income and log percent college graduates over 21 in the domain of our 

restrictions. More specifically, for every increase of one in log median income, 

the log of percent college graduates is predicted to increase by 0.72353. This, 

however, does not imply that median income directly causes in a higher percent of 

college graduates.  

F. Final conclusion 

The three tests done (ANOVA test,  2-sample test, and regression test) effectively explain 

the general effects that median income have on an individual.  The conclusion that comes 

from the tests varies. First, the ANOVA test concluded that the sample mean median 

incomes for four different regions are not the same. This means that a person’s income 

may be estimated using the region they live in. The 2-sample independent t-test 

concluded that the median income in Urban Indicator 0 and Urban Indicator 1 are also 

not equal. This also means that a person’s income may be estimated using their urban 

indicator as well (whether they live in an urban area or rural area). Lastly, the regression 

test concluded that there is an association between median income and college graduates 

over 21. Overall, we can say that the median income has a general effect on these three 

variables. The reasoning behind why they have an effect is inconclusive due to not 

having enough data given; however, it can be concluded that the median income 

definitely has an effect on each region, urban indicator, and college graduates over 21. 

All of these conclusions are very important to know especially for the government 

because it will allow the government to cater to the needs of each income bracket in order 

to create a better environment for the people that live in the population. The data found 

from these tests will be able to be utilized in order to understand each income brackets 

better. 
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G. Appendix:  

Codes: 

a. Inference 1: ANOVA of Median Income vs Region 

Code in R 
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b. Inference 2: 2-sample test Urban Indicator vs Median Income 

Code in SAS: 

data USDataSubsetnew;    infile "W:\fall 2017\stats350\us-data-cleaned.txt" 

delimiter = '09'x firstobs = 2 ;  

  length IncomeCategory $11.;  

  input IncomeCategory State $ Region $ CountyIndex $

UrbanIndicator $ Population LandArea PopulationDensity

PercentMaleDivorce PercentFemaleDivorce MedianIncome

PercentCollegeGraduates MedianHouseAge RobberiesPerPopulation 

AssaultsPerPopulation BurglariesPerPopulation LarceniesPerPopulation 

EducationSpending EducationSpendingP2 TestScore;  

Run; 

data USDataSubsetFinal; 

set USDataSubsetnew; 

if UrbanIndicator = '1' or UrbanIndicator = '0'; 

Run; 

 

proc ttest data = USDataSubsetFinal H0 = 0 sides = 2 alpha = 0.05; 

 class UrbanIndicator;  

 var MedianIncome;  

Run; 

data logged; 

set USDataSubsetFinal; 

logincome = log(MedianIncome); 

 

proc ttest data = logged H0 = 0 sides = 2 alpha = 0.05; 

 class UrbanIndicator;  

 var logincome;  
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run; 

c. Inference 3: Regression of Median Income vs Percent College Graduate 

Code in R  

library(ggplot2) 
dSub <- subset(USDataCleaned, 20420 < USDataCleaned$MedianIncome & 
USDataCleaned$MedianIncome < 41320) 
 
attach(dSub) 
 
#Histogram of Median Income 
windows() 
ggplot(dSub, aes(MedianIncome)) + 
  geom_histogram(aes(y=..density..), 
                 bins = sqrt(nrow(dSub)), fill="grey",col="black") + 
  geom_density(col="red",lwd=1) + 
  stat_function(fun=dnorm,args=list(mean=mean(MedianIncome), 
                                    sd=sd(MedianIncome)), col="blue",lwd=1) + 
  ggtitle("Histogram of Median Income") 
 
#Tranform the data 
dSub$lMedianIncome <- log(dSub$MedianIncome) 
 
#Transformed Median Income 
windows() 
ggplot(dSub, aes(lMedianIncome)) + 
  geom_histogram(aes(y=..density..), 
                 bins = sqrt(nrow(dSub)), fill="grey",col="black") + 
  geom_density(col="red",lwd=1) + 
  stat_function(fun=dnorm,args=list(mean=mean(lMedianIncome), 
                                    sd=sd(lMedianIncome)), col="blue",lwd=1) + 
  ggtitle("Histogram of Log Median Income") 
 
#Percent cd 
windows() 
ggplot(dSub, aes(PercentCollegeGraduates)) + 
  geom_histogram(aes(y=..density..), 
                 bins = sqrt(nrow(dSub)), fill="grey",col="black") + 
  geom_density(col="red",lwd=1) + 
  stat_function(fun=dnorm,args=list(mean=mean(PercentCollegeGraduates), 
                                    sd=sd(PercentCollegeGraduates)), 
col="blue",lwd=1) + 
  ggtitle("Histogram of Percent College Graduates") 
 
#Tranform data 
dSub$lCollegeGrad <- log(dSub$PercentCollegeGraduates) 
 
#Percent cd tranformed 
windows() 
ggplot(dSub, aes(lCollegeGrad)) + 
  geom_histogram(aes(y=..density..), 
                 bins = sqrt(nrow(dSub)), fill="grey",col="black") + 
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  geom_density(col="red",lwd=1) + 
  stat_function(fun=dnorm,args=list(mean=mean(lCollegeGrad), 
                                    sd=sd(lCollegeGrad)), col="blue",lwd=1) + 
  ggtitle("Histogram of Log Percent College Graduates") 
 
#Scatterplot of log median income vs log percent grad 
windows() 
ggplot(dSub, aes(x=lMedianIncome, y=lCollegeGrad))+ 
  geom_point(shape = 1) + 
  geom_smooth(method = lm, se = FALSE) + 
  ggtitle("Relationship between Log Median Income and Log Percent College Graduate") 
+ 
  xlab("Log Median Income") + 
  ylab("Log Percent College Graduate") 
 
rs<-cor(dSub$lMedianIncome, dSub$lCollegeGrad) 
 
dSub.lm <- lm(lCollegeGrad ~ lMedianIncome, data = dSub) 
summary(dSub.lm) 
confint(dSub.lm, level = 0.95) 
 
#Res plot 
windows() 
ggplot(data.frame(residuals=dSub.lm$res, lMedianIncome=dSub$lMedianIncome), 
aes(x=lMedianIncome, y=residuals))+ 
  geom_point(shape = 1) + 
  geom_smooth(method = lm, se = FALSE) + 
  ggtitle("Residual Plot") + 
  xlab("Log of Median Income") + 
  ylab("Residuals") 
 
#Res dist 
windows() 
ggplot(dSub.lm, aes(dSub.lm$res)) + 
  geom_histogram(aes(y=..density..), 
                 bins = sqrt(nrow(dSub)), fill="grey",col="black") + 
  geom_density(col="red",lwd=1) + 
  stat_function(fun=dnorm,args=list(mean=mean(dSub.lm$res), 
                                    sd=sd(dSub.lm$res)), col="blue",lwd=1) + 
  ggtitle("Histogram of Residuals") 
 
#Res QQ 
xbar <- mean(dSub.lm$res)  
s <- sd(dSub.lm$res) 
windows() 
ggplot(dSub.lm, aes(sample=dSub.lm$res)) + 
  stat_qq() + 
  geom_abline(slope = s, intercept = xbar) + 
  ggtitle("QQ Plot of Residuals") 
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